skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nadeau, Jay_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Off-axis digital holographic microscopy (DHM) provides both amplitude and phase images, and so it may be used for label-free 3D tracking of micro- and nano-sized particles of different compositions, including biological cells, strongly absorbing particles, and strongly scattering particles. Contrast is provided by differences in either the real or imaginary parts of the refractive index (phase contrast and absorption) and/or by scattering. While numerous studies have focused on phase contrast and improving resolution in DHM, particularly axial resolution, absent have been studies quantifying the limits of detection for unresolved particles. This limit has important implications for microbial detection, including in life-detection missions for space flight. Here we examine the limits of detection of nanosized particles as a function of particle optical properties, microscope optics (including camera well depth and substrate), and data processing techniques and find that DHM provides contrast in both amplitude and phase for unresolved spheres, in rough agreement with Mie theory scattering cross-sections. Amplitude reconstructions are more useful than phase for low-index spheres and should not be neglected in DHM analysis. 
    more » « less
  2. Described over 100 years ago, the Gouy phase anomaly refers to the additional π<#comment/> phase shift that is accumulated as a wave passes through focus. It is potentially useful in analyzing any type of phase-sensitive imaging; in light microscopy, digital holographic microscopy (DHM) provides phase information in the encoded hologram. One limitation of DHM is the weak contrast generated by many biological cells, especially unpigmented bacteria. We demonstrate here that the Gouy phase anomaly may be detected directly in the phase image using the z-derivative of the phase, allowing for precise localization of unlabeled, micrometer-sized bacteria. The use of dyes that increase phase contrast does not improve detectability. This approach is less computationally intensive than other procedures such as deconvolution and is relatively insensitive to reconstruction parameters. The software is implemented in an open-source FIJI plug-in. 
    more » « less